Chapter 16: Differential Equations

ثبت نشده
چکیده

A vast number of mathematical models in various areas of science and engineering involve differential equations. This chapter provides a starting point for a journey into the branch of scientific computing that is concerned with the simulation of differential problems. We shall concentrate mostly on developing methods and concepts for solving initial value problems for ordinary differential equations: this is the simplest class (although, as you will see, it can be far from being simple), yet a very important one. It is the only class of differential problems for which, in our opinion, up-to-date numerical methods can be learned in an orderly and reasonably complete fashion within a first course text. Section 16.1 prepares the setting for the numerical treatment that follows in Sections 16.2–16.6 and beyond. It also contains a synopsis of what follows in this chapter. Numerical methods for solving boundary value problems for ordinary differential equations receive a quick review in Section 16.7. More fundamental difficulties arise here, so this section is marked as advanced. Most mathematical models that give rise to differential equations in practice involve partial differential equations, where there is more than one independent variable. The numerical treatment of partial differential equations is a vast and complex subject that relies directly on many of the methods introduced in various parts of this text. An orderly development belongs in a more advanced text, though, and our own description in Section 16.8 is downright anecdotal, relying in part on examples introduced earlier.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jets and Differential Invariants

Transformation groups figure prominently in Lie’s theory of symmetry groups of differential equations, which we discuss in Chapter 4. They will act on the basic space coordinatized by the independent and dependent variables relevant to the system of differential equations under consideration. Since we are dealing with differential equations we must be able to handle the derivatives of the depen...

متن کامل

Chapter 17 Dynamics of PlanarMedia

In this chapter, we continue our ascent of the dimensional ladder for linear systems. In Chapter 6, we embarked on our journey with equilibrium configurations of discrete systems — mass–spring chains, circuits, and structures — which are governed by certain linear algebraic systems. In Chapter 9, the dynamical behavior of such discrete systems was modeled by systems of linear ordinary different...

متن کامل

Numerical Solution of Stochastic Differential Equations in Finance

This chapter is an introduction and survey of numerical solution methods for stochastic differential equations. The solutions will be continuous stochastic processes that represent diffusive dynamics, a common modeling assumption for financial systems. We include a review of fundamental concepts, a description of elementary numerical methods and the concepts of convergence and order for stochas...

متن کامل

A Survey of Time-Differencing Schemes for the Oscillation and Decay Equations

In atmospheric dynamics, the governing equations are usually non-linear partial differential equations. Some knowledge of finite-difference approximations to ordinary differential equations (especially first order) is needed, however. In fact, if we linearize a governing partial differential equation and assume a wave form for the solution, the equation simply reduces to an ordinary differentia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011